Between pebbles and organisms: weaving autonomy into the Markov blanket
نویسندگان
چکیده
The free energy principle (FEP) is sometimes put forward as accounting for biological self-organization and cognition. It states that a system to maintain non-equilibrium steady-state with its environment it can be described minimising energy. said entirely scale-free, applying anything from particles organisms, interactive machines, spanning the abiotic biotic. Because FEP so general in application, one might wonder whether this framework capture specific biology. We take steps correct here. first explicate worry, taking pebbles examples of an system, then discuss what extent distinguish dynamics organism’s. articulate notion ‘autonomy precarious operational closure’ enactive literature, investigate how unpacked within FEP. This enables delineate between biotic; avoiding pebble worry keeps out touch living systems we encounter world.
منابع مشابه
Counting Markov Blanket Structures
Learning Markov blanket (MB) structures has proven useful in performing feature selection, learning Bayesian networks (BNs), and discovering causal relationships. We present a formula for efficiently determining the number of MB structures given a target variable and a set of other variables. As expected, the number of MB structures grows exponentially. However, we show quantitatively that ther...
متن کاملBayesian Markov Blanket Estimation
This paper considers a Bayesian view for estimating a sub-network in a Markov random field. The sub-network corresponds to the Markov blanket of a set of query variables, where the set of potential neighbours here is big. We factorize the posterior such that the Markov blanket is conditionally independent of the network of the potential neighbours. By exploiting this blockwise decoupling, we de...
متن کاملInference in Markov Blanket Networks
Bayesian networks have been successfully used to model joint probabilities in many cases. When dealing with continuous variables and nonlinear relationships neural networks can be used to model conditional densities as part of a Bayesian network. However, doing inference can then be com-putationally expensive. Also, information is implicitly passed backwards through neural networks, i.e. from t...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملthe relationship between collocational competence and listening comprehension
پس از پیدایش روش تدریس tpr توسط جیمز اشر که توجه و تآکید بسیاری بر مهارت شنیداری داشت زبانشناسان همواره در صدد یافتن راههایی برای بهبود این مهارت در زبان آموزان می باشند. از طرفی جی-آر-فرث که از پیشگامان زبانشناسی می باشد بر تآثیر لغات و بویژه گروه کلمات که اغلب در گفتار با هم می آیند (هم آیی کلمات)تأکید بسیار کرده است. به این دلیل و به منظوربررسی رابطه بین این دو عامل یعنی درک شنیداری و دانش...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Synthese
سال: 2021
ISSN: ['0039-7857', '1573-0964']
DOI: https://doi.org/10.1007/s11229-021-03084-w